$$
\mathbb{F}_{p}^{\mathrm{alg}}((t))
$$

Gönenç Onay

Logic Seminar at Oxford
joint work Françoise Delon and Arno Fehm

March 5, 2020

The object

Let p be a prime number.
$\mathbb{F}_{p}^{a l g}$ the algebraic closure of the field with p-elements \mathbb{F}_{p}. $\mathbb{F}_{p}^{\text {alg }}((t))$ field of Laurent series over \mathbb{F}_{p}, i.e. the completion of the field of rational functions $\mathbb{F}_{p}(t)$ with respect to the t-adic valuation.
Note that $\mathbb{F}_{p}^{a / g}(t)^{h}$ is existentially closed in $\mathbb{F}_{p}^{a / g}((t))$ (and in fact, after Rideau-Scanlon it is an elementary substructure)

Wanted result

Conjecture (D.F.O)

The below theory T of equicharacteristic valued fields (p, p) with a constant t in the field sort, given by the following description is complete and model complete:
$(K, v) \models T$ if and only if,

1. v is henselian,
2. the residue field K / v is algebraically closed,
3. the value group $v K$ is a \mathbb{Z}-group,
4. $v(t)=\min v K_{>0}$,
5. $\left(1, t, \ldots, t^{p-1}\right)$ is a basis of K^{p}-vector space K,
$\mathrm{VdD}(t, \mathrm{n})$ For every 1 -variable monic separable additive polynomial φ of degree p^{n}, with a unique jump value

$$
\forall x \exists y x-\varphi(y) \in\left(K^{p^{n}}\right)^{\perp}
$$

where $\left(K^{p^{n}}\right)^{\perp}=\oplus_{i=1}^{p^{n}-1} K^{p^{n}} t^{i}$.

Consequences

1. $\mathbb{F}_{p}^{a l g}((t))$ is decidable.
2. $\mathbb{F}_{p}^{\text {alg }}(t)^{h}$ is the prime model of T.

Motivation

1. Papers by Kuhlmann, van den Dries, Anscombe (especially on optimal approximation), Kuhlmann's incompleteness result of the naive axiomatization of $\mathbb{F}_{p}((t))$.
2. Some early discussions (around 2012) with Salih Durhan.
3. Module theory of valued difference fields (O.).

First (positive-) observations about T

1. Every model of T is defectless.
2. Assuming resolution of singularities $\mathbb{F}_{p}^{a l g}(t)^{h}$ is existentially closed in every model.
3. Image of every (possibly multivariate) additive polynomial is \forall-definable.
4. If $(L \subseteq K, v)$ a pair of models then
L / \mathcal{O}_{L} is existentially closed in K / \mathcal{O}_{K}
as a $F[$ Frob $]$-module, where $\mathbb{F}_{p} \subseteq F \subseteq \mathbb{F}_{p}^{\text {alg }}(t)^{h}$
5. $K \models T$. If $\mathcal{O}_{w}(K) \supseteq \mathcal{O}_{v}(K)$ then $\mathcal{O}_{w}(K) \models V d D(t, n)$ and $K / w \models V d D(t, n)$.
6. If $[L \models T-V d D(t, n)]$ and w_{0} is the finest proper coarsening of v then L / w_{0} and $\mathcal{O}_{w_{0}}(L) \models V d D(n)$.
7. $K \models T$ and K^{\prime} / K finite separable with a uniformer u. Then $K^{\prime} \models V d D(u, n)$.

Observation about possible obstacles in a proof

1. $T-\mathrm{VdD}(\mathrm{n})+" v$ defectless" is not complete.
2. There is $L \models(T-V d D(n, t))+$ " v is defectless", such that $v L$ is not stably embedded.
3. $K^{p^{\infty}}$ satisfies Kaplansky conditions but, when K is ω-saturated $K^{p^{\infty}}$ is never algebraically maximal since we have

$$
K=K^{p^{\infty}}+\varphi(K)
$$

where $\varphi(x)=x^{p}-x$ (:true for any ω-saturated characteristic p field).
4. We can have $L \models T-V d D(n, t), L \subset L^{\prime} \subset K, K \models T$ such that L^{\prime} / L immediate algebraic of degree p, but non-Galois.

About a proof

Let $k \subset K$ both models of T (K being already quite big).
We want to embed K over k, into a big elementary extension, say U, of k.

Proposition

Let $L \subset K$, be a maximal one, among the subfields of K which are embeddable in U over k. Then K / L is immediate.
(naive-)proof.

1. Use Hensel Lemma and the fact that $K^{p^{\infty}} / v=K / v$ for handling residual extensions.
2. Use that $K^{p^{\infty}} / v=K / v$ is infinite for value group extensions (and yes, we use the residue field for value group extensions) and use "paths".

Why naive?

We want to show $L=K$. But naive proof only shows that

$$
L \models T-V d D(n, t) .
$$

1. L can be not relatively algebraically closed in K.
2. There are examples $L \subseteq K, L$ relatively alg. closed in K but L not existentially closed in K.
Example: We can have $\varphi(\alpha):=\alpha^{p}-\alpha=a \in L . L(\alpha) / L$ immediate How to embed $L(\alpha)$ into U ?

Idea: If L / \mathcal{O}_{L} is existentially closed in K / \mathcal{O} then we are done. Hence the idea is to "update" the proof of above proposition with adding the sort K / \mathcal{O}.
But this difficult (and we do not really need).

We need to deal with $K^{p^{\infty}}$

Set $\varphi(x):=x^{p}-x$.
Proposition
Let α_{γ} be a p.c sequence such that $\varphi\left(a_{\gamma}\right) \rightsquigarrow$ a then there is β such that

1. $\alpha_{\gamma} \rightsquigarrow \beta$,
2. $\varphi(\beta)-a \in K^{p^{\infty}}$.

We have to be able to know (for example) $\varphi(K) \cap K^{p^{\infty}}$.

What is the power of $\operatorname{VdD}(t, n)$

$K \models T$. Let $a \in K$. Write

$$
a=\varphi\left(a_{0}\right)+a_{1}^{p} t+\ldots a_{p-1}^{p} t^{p-1}
$$

and

$$
a=\varphi\left(b_{0}\right)+b_{1}^{p} t+\ldots b_{p-1}^{p} t^{p-1} .
$$

Then $a_{0}-b_{0} \in \mathcal{O}$ and $a_{i}-b_{i} \in \mathcal{O}$ for all i. Moreover

$$
v\left(\varphi\left(a_{0}\right)-a\right)=\max _{x \in K}\{v(\varphi(x)-a)\}=\min _{i \geq 1} p v\left(a_{i}\right)+i .
$$

(Same with b_{0} and b_{i} 's).
notation: $a_{0} / \mathcal{O}:=a^{\varphi}$ and $a_{i} / \mathcal{O}:=(a)^{\perp \varphi}{ }_{i}$.

$(a)^{\perp \varphi} ;$ and $\lambda_{i}(a)$

The a_{i} 's and $\lambda_{i}(a)$'s can be quite different:
$a \in K^{p^{\infty}} \backslash \varphi(K)$.
$\lambda_{i}(a)=0$ for all $i \geq 1$ but $v\left(a_{i}\right)<0$ for some i.
But we have

$$
(a)^{\perp \varphi} i=\lambda_{i}\left(a^{\varphi}\right)
$$

for all $i \geq 1$.
This is also true for all additive ψ instead of φ with coefficients in $K^{p^{\infty}}$.

Interlude: Non-standart Frobenius

?: How to make $K^{p^{\infty}}$ concrete.
Let $k \neq T$. Take $K:=k^{\mathbb{N}} / U$ for a non principal ultrafilter U over \mathbb{N}.
Let $\sigma\left[\left(x_{i}\right)_{i}\right]:=\left[\left(x_{i}^{p^{i}}\right)_{i}\right](\bmod U)$. Then $\sigma(K)^{1 / p^{\infty}} \subset K^{p^{\infty}}$, an isomorphic copy of $K^{1 / p^{\infty}}$.
We have for $x, x=x^{\sigma}+\varphi\left(x_{0}\right)$ for some $x_{0} \in K$.
Let $k_{0}:=\mathbb{F}_{p}^{a l g}(t)^{h}$.
$k_{1}:=\sigma\left(k_{0}\right)^{1 / p^{\infty}}(t)^{h}$, and $k_{i}=\sigma\left(k_{i-1}\right)^{1 / p^{\infty}}(t)^{h}$.
$k_{\sigma}:=\bigcup_{i} k_{i}$.
Then k_{σ} goes up to a minimal model.

Proposition (almost)

Let $k \subseteq K$ both models of T, and U a big saturated elementary extension of k. Let $L \subset K$, be a maximal subfield among the subfields of K which are embeddable in U over k. Then K / L is immediate and $L \models T$.

Thank you.

