$$\mathbb{F}_p^{alg}((t))$$

Gönenç Onay

Logic Seminar at Oxford

joint work Françoise Delon and Arno Fehm

March 5, 2020

The object

Let p be a prime number.

 \mathbb{F}_p^{alg} the algebraic closure of the field with *p*-elements \mathbb{F}_p .

 $\mathbb{F}_p^{\mathsf{alg}}((t))$ field of Laurent series over \mathbb{F}_p , i.e. the completion of the field of rational functions $\mathbb{F}_p(t)$ with respect to the *t*-adic valuation.

Note that $\mathbb{F}_p^{alg}(t)^h$ is existentially closed in $\mathbb{F}_p^{alg}((t))$ (and in fact, after Rideau-Scanlon it is an elementary substructure)

Wanted result

Conjecture (D.F.O)

The below theory T of equicharacteristic valued fields (p, p) with a constant t in the field sort, given by the following description is complete and model complete:

$$(K, v) \models T$$
 if and only if,

- 1. v is henselian,
- 2. the residue field K/v is algebraically closed,
- 3. the value group vK is a \mathbb{Z} -group,
- 4. $v(t) = \min v K_{>0}$,
- 5. $(1, t, \dots, t^{p-1})$ is a basis of K^p -vector space K,
- VdD(t,n) For every 1-variable monic separable additive polynomial φ of degree p^n , with a unique jump value

$$\forall x \exists y \ x - \varphi(y) \in (K^{p^n})^{\perp}$$

where $(K^{p^n})^{\perp} = \bigoplus_{i=1}^{p^n-1} K^{p^n} t^i$.

Consequences

- 1. $\mathbb{F}_p^{alg}((t))$ is decidable.
- 2. $\mathbb{F}_p^{alg}(t)^h$ is the prime model of T.

Motivation

- 1. Papers by Kuhlmann, van den Dries, Anscombe (especially on optimal approximation), Kuhlmann's incompleteness result of the naive axiomatization of $\mathbb{F}_p((t))$.
- 2. Some early discussions (around 2012) with Salih Durhan.
- 3. Module theory of valued difference fields (O.).

First (positive-) observations about T

- 1. Every model of *T* is defectless.
- 2. Assuming resolution of singularities $\mathbb{F}_p^{alg}(t)^h$ is existentially closed in every model.
- Image of every (possibly multivariate) additive polynomial is ∀-definable.
- 4. If $(L \subseteq K, v)$ a pair of models then L/\mathcal{O}_L is existentially closed in K/\mathcal{O}_K as a F[Frob]-module, where $\mathbb{F}_p \subseteq F \subseteq \mathbb{F}_p^{alg}(t)^h$
- 5. $K \models T$. If $\mathcal{O}_w(K) \supseteq \mathcal{O}_v(K)$ then $\mathcal{O}_w(K) \models VdD(t, n)$ and $K/w \models VdD(t, n)$.
- 6. If $[L \models T VdD(t, n)]$ and w_0 is the finest proper coarsening of v then L/w_0 and $\mathcal{O}_{w_0}(L) \models VdD(n)$.
- 7. $K \models T$ and K'/K finite separable with a uniformer u. Then $K' \models VdD(u, n)$.

Observation about possible obstacles in a proof

- 1. T VdD(n) + "v defectless" is not complete.
- 2. There is $L \models (T VdD(n, t)) + "v"$ is defectless", such that vL is not stably embedded.
- 3. $K^{p^{\infty}}$ satisfies Kaplansky conditions but, when K is ω -saturated $K^{p^{\infty}}$ is **never** algebraically maximal since we have

$$K = K^{p^{\infty}} + \varphi(K)$$

where $\varphi(x) = x^p - x$ (:true for any ω -saturated characteristic p field).

4. We can have $L \models T - VdD(n, t)$, $L \subset L' \subset K$, $K \models T$ such that L'/L immediate algebraic of degree p, but non-Galois.

About a proof

Let $k \subset K$ both models of T (K being already quite big). We want to embed K over k, into a big elementary extension, say U, of k.

Proposition

Let $L \subset K$, be a maximal one, among the subfields of K which are embeddable in U over k. Then K/L is immediate.

(naive-)proof.

- 1. Use Hensel Lemma and the fact that $K^{p^{\infty}}/v = K/v$ for handling residual extensions.
- 2. Use that $K^{p^{\infty}}/v = K/v$ is infinite for value group extensions (and yes, we use the residue field for value group extensions) and use "paths".

Why naive?

We want to show L = K. But naive proof only shows that

$$L \models T - VdD(n, t)$$
.

- 1. L can be not relatively algebraically closed in K.
- 2. There are examples $L \subseteq K$, L relatively alg. closed in K but L not existentially closed in K.

Example: We can have $\varphi(\alpha) := \alpha^p - \alpha = a \in L$. $L(\alpha)/L$ immediate How to embed $L(\alpha)$ into U?

Idea: If L/\mathcal{O}_L is existentially closed in K/\mathcal{O} then we are done. Hence the idea is to "update" the proof of above proposition with adding the sort K/\mathcal{O} .

But this difficult (and we do not really need).

We need to deal with $K^{p^{\infty}}$

Set
$$\varphi(x) := x^p - x$$
.

Proposition

Let α_{γ} be a p.c sequence such that $\varphi(a_{\gamma}) \rightsquigarrow$ a then there is β such that

- 1. $\alpha_{\gamma} \rightsquigarrow \beta$,
- 2. $\varphi(\beta) a \in K^{p^{\infty}}$.

We have to be able to know (for example) $\varphi(K) \cap K^{p^{\infty}}$.

What is the power of VdD(t, n)

 $K \models T$. Let $a \in K$. Write

$$a = \varphi(a_0) + a_1^p t + \dots + a_{p-1}^p t^{p-1}$$

and

$$a = \varphi(b_0) + b_1^p t + \dots b_{p-1}^p t^{p-1}.$$

Then $a_0 - b_0 \in \mathcal{O}$ and $a_i - b_i \in \mathcal{O}$ for all i. Moreover

$$v(\varphi(a_0)-a)=\max_{x\in K}\{v(\varphi(x)-a)\}=\min_{i\geq 1}pv(a_i)+i.$$

(Same with b_0 and b_i 's).

notation: $a_0/\mathcal{O} := a^{\varphi}$ and $a_i/\mathcal{O} := (a)^{\perp \varphi}_i$.

$$(a)^{\perp \varphi}_i$$
 and $\lambda_i(a)$

The a_i 's and $\lambda_i(a)$'s can be quite different:

$$a \in K^{p^{\infty}} \setminus \varphi(K)$$
.

 $\lambda_i(a) = 0$ for all $i \ge 1$ but $v(a_i) < 0$ for some i.

But we have

$$(a)^{\perp\varphi}{}_i=\lambda_i(a^\varphi)$$

for all $i \geq 1$.

This is also true for all additive ψ instead of φ with coefficients in $K^{p^{\infty}}$.

Interlude: Non-standart Frobenius

?: How to make $K^{p^{\infty}}$ concrete.

Let $k \models T$. Take $K := k^{\mathbb{N}}/U$ for a non principal ultrafilter U over \mathbb{N} .

Let $\sigma[(x_i)_i] := [(x_i^{p^i})_i] \pmod{U}$. Then $\sigma(K)^{1/p^\infty} \subset K^{p^\infty}$, an isomorphic copy of K^{1/p^∞} .

We have for x, $x = x^{\sigma} + \varphi(x_0)$ for some $x_0 \in K$.

Let $k_0 := \mathbb{F}_p^{alg}(t)^h$.

 $k_1 := \sigma(k_0)^{1/p^{\infty}}(t)^h$, and $k_i = \sigma(k_{i-1})^{1/p^{\infty}}(t)^h$.

 $k_{\sigma}:=\bigcup_{i}k_{i}.$

Then k_{σ} goes up to a minimal model.

Proposition (almost)

Let $k \subseteq K$ both models of T, and U a big saturated elementary extension of k. Let $L \subset K$, be a maximal subfield among the subfields of K which are embeddable in U over k. Then K/L is immediate and $L \models T$.

Thank you.